Перевод: с английского на все языки

со всех языков на английский

Transactions of the Royal Institution

  • 1 Meek, Marshall

    SUBJECT AREA: Ports and shipping
    [br]
    b. 22 April 1925 Auchtermuchty, Fife, Scotland
    [br]
    Scottish naval architect and leading twentieth-century exponent of advanced maritime technology.
    [br]
    After early education at Cupar in Fife, Meek commenced training as a naval architect, taking the then popular sandwich apprenticeship of alternate half years at the University of Glasgow (with a Caird Scholarship) and at a shipyard, in his case the Caledon of Dundee. On leaving Dundee he worked for five years with the British Ship Research Association before joining Alfred Holt \& Co., owners of the Blue Funnel Line. During his twenty-five years at Liverpool, he rose to Chief Naval Architect and Director and was responsible for bringing the cargo-liner concept to its ultimate in design. When the company had become Ocean Fleets, it joined with other British shipowners and looked to Meek for the first purpose-built containership fleet in the world. This required new ship designs, massive worldwide investment in port facilities and marketing to win public acceptance of freight containers, thereby revolutionizing dry-cargo shipping. Under the houseflag of OCL (now POCL), this pioneer service set the highest standards of service and safety and continues to operate on almost every ocean.
    In 1979 Meek returned to the shipbuilding industry when he became Head of Technology at British Shipbuilders. Closely involved in contemporary problems of fuel economy and reduced staffing, he held the post for five years before his appointment as Managing Director of the National Maritime Institute. He was deeply involved in the merger with the British Ship Research Association to form British Maritime Technology (BMT), an organization of which he became Deputy Chairman.
    Marshall Meek has held many public offices, and is one of the few to have been President of two of the United Kingdom's maritime institutions. He has contributed over forty papers to learned societies, has acted as Visiting Professor to Strathclyde University and University College London, and serves on advisory committees to the Ministry of Defence, the Department of Transport and Lloyd's Register of Shipping. While in Liverpool he served as a Justice of the Peace.
    [br]
    Principal Honours and Distinctions
    CBE 1989. Fellow of the Royal Academy of Engineering 1990. President, Royal Institution of Naval Architects 1990–3; North East Coast Institution of Engineers and Shipbuilders 1984–6. Royal Designer for Industry (RDI) 1986. Royal Institution of Naval Architects Silver Medal (on two occasions).
    Bibliography
    1970, "The first OCL containerships", Transactions of the Royal Institution of Naval Architects.
    FMW

    Biographical history of technology > Meek, Marshall

  • 2 Linton, Hercules

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1 January 1836 Inverbervie, Kincardineshire, Scotland
    d. 15 May 1900 Inverbervie, Kincardineshire, Scotland
    [br]
    Scottish naval architect and shipbuilder; designer of the full-rigged ship Cutty Sark.
    [br]
    Linton came from a north-east Scottish family with shipbuilding connections. After education at Arbuthnott and then Arbroath Academy, he followed his father by becoming an apprentice at the Aberdeen shipyard of Alex Hall in January 1855. Thus must have been an inspiring time for him as the shipyards of Aberdeen were at the start of their rise to world renown. Hall's had just introduced the hollow, lined Aberdeen Bow which heralded the great years of the Aberdeen Clippers. Linton stayed on with Hall's until around 1863, when he joined the Liverpool Under-writers' Register as a ship surveyor; he then worked for similar organizations in different parts of England and Scotland. Early in 1868 Linton joined in partnership with William Dundas Scott and the shipyard of Scott and Linton was opened on the banks of the River Leven, a tributary of the Clyde, at Dumbarton. The operation lasted for about three years until bankruptcy forced closure, the cause being the age-old shipbuilder's problem of high capital investment with slow cash flow. Altogether, nine ships were built, the most remarkable being the record-breaking composite-built clipper ship Cutty Sark. At the time of the closure the tea clipper was in an advanced state of outfitting and was towed across the water to Denny's shipyard for completion. Linton worked for a while with Gourlay Brothers of Dundee, and then with the shipbuilders Oswald Mordaunt, of Woolston near Southampton, before returning to the Montrose area in 1884. His wife died the following year and thereafter Linton gradually reduced his professional commitments.
    [br]
    Further Reading
    Robert E.Brettle, 1969, The Cutty Sark, Her Designer and Builder. Hercules Linton 1836–1900, Cambridge: Heffer.
    Frank C.G.Carr, "The restoration of the Cutty Sark", Transactions of the Royal Institution
    of Naval Architects 108:193–216.
    Fred M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding, Cambridge: PSL.
    FMW

    Biographical history of technology > Linton, Hercules

  • 3 Preece, Sir William Henry

    [br]
    b. 15 February 1834 Bryn Helen, Gwynedd, Wales
    d. 6 November 1913 Penrhos, Gwynedd, Wales
    [br]
    Welsh electrical engineer who greatly furthered the development and use of wireless telegraphy and the telephone in Britain, dominating British Post Office engineering during the last two decades of the nineteenth century.
    [br]
    After education at King's College, London, in 1852 Preece entered the office of Edwin Clark with the intention of becoming a civil engineer, but graduate studies at the Royal Institution under Faraday fired his enthusiasm for things electrical. His earliest work, as connected with telegraphy and in particular its application for securing the safe working of railways; in 1853 he obtained an appointment with the Electric and National Telegraph Company. In 1856 he became Superintendent of that company's southern district, but four years later he moved to telegraph work with the London and South West Railway. From 1858 to 1862 he was also Engineer to the Channel Islands Telegraph Company. When the various telegraph companies in Britain were transferred to the State in 1870, Preece became a Divisional Engineer in the General Post Office (GPO). Promotion followed in 1877, when he was appointed Chief Electrician to the Post Office. One of the first specimens of Bell's telephone was brought to England by Preece and exhibited at the British Association meeting in 1877. From 1892 to 1899 he served as Engineer-in-Chief to the Post Office. During this time he made a number of important contributions to telegraphy, including the use of water as part of telegraph circuits across the Solent (1882) and the Bristol Channel (1888). He also discovered the existence of inductive effects between parallel wires, and with Fleming showed that a current (thermionic) flowed between the hot filament and a cold conductor in an incandescent lamp.
    Preece was distinguished by his administrative ability, some scientific insight, considerable engineering intuition and immense energy. He held erroneous views about telephone transmission and, not accepting the work of Oliver Heaviside, made many errors when planning trunk circuits. Prior to the successful use of Hertzian waves for wireless communication Preece carried out experiments, often on a large scale, in attempts at wireless communication by inductive methods. These became of historic interest only when the work of Maxwell and Hertz was developed by Guglielmo Marconi. It is to Preece that credit should be given for encouraging Marconi in 1896 and collaborating with him in his early experimental work on radio telegraphy.
    While still employed by the Post Office, Preece contributed to the development of numerous early public electricity schemes, acting as Consultant and often supervising their construction. At Worcester he was responsible for Britain's largest nineteenth-century public hydro-electric station. He received a knighthood on his retirement in 1899, after which he continued his consulting practice in association with his two sons and Major Philip Cardew. Preece contributed some 136 papers and printed lectures to scientific journals, ninety-nine during the period 1877 to 1894.
    [br]
    Principal Honours and Distinctions
    CB 1894. Knighted (KCB) 1899. FRS 1881. President, Society of Telegraph Engineers, 1880. President, Institution of Electrical Engineers 1880, 1893. President, Institution of Civil Engineers 1898–9. Chairman, Royal Society of Arts 1901–2.
    Bibliography
    Preece produced numerous papers on telegraphy and telephony that were presented as Royal Institution Lectures (see Royal Institution Library of Science, 1974) or as British Association reports.
    1862–3, "Railway telegraphs and the application of electricity to the signaling and working of trains", Proceedings of the ICE 22:167–93.
    Eleven editions of Telegraphy (with J.Sivewright), London, 1870, were published by 1895.
    1883, "Molecular radiation in incandescent lamps", Proceedings of the Physical Society 5: 283.
    1885. "Molecular shadows in incandescent lamps". Proceedings of the Physical Society 7: 178.
    1886. "Electric induction between wires and wires", British Association Report. 1889, with J.Maier, The Telephone.
    1894, "Electric signalling without wires", RSA Journal.
    Further Reading
    J.J.Fahie, 1899, History of Wireless Telegraphy 1838–1899, Edinburgh: Blackwood. E.Hawkes, 1927, Pioneers of Wireless, London: Methuen.
    E.C.Baker, 1976, Sir William Preece, F.R.S. Victorian Engineer Extraordinary, London (a detailed biography with an appended list of his patents, principal lectures and publications).
    D.G.Tucker, 1981–2, "Sir William Preece (1834–1913)", Transactions of the Newcomen Society 53:119–36 (a critical review with a summary of his consultancies).
    GW / KF

    Biographical history of technology > Preece, Sir William Henry

  • 4 Alexanderson, Ernst Frederik Werner

    [br]
    b. 25 January 1878 Uppsala, Sweden
    d. ? May 1975 Schenectady, New York, USA
    [br]
    Swedish-American electrical engineer and prolific radio and television inventor responsible for developing a high-frequency alternator for generating radio waves.
    [br]
    After education in Sweden at the High School and University of Lund and the Royal Institution of Technology in Stockholm, Alexanderson took a postgraduate course at the Berlin-Charlottenburg Engineering College. In 1901 he began work for the Swedish C \& C Electric Company, joining the General Electric Company, Schenectady, New York, the following year. There, in 1906, together with Fessenden, he developed a series of high-power, high-frequency alternators, which had a dramatic effect on radio communications and resulted in the first real radio broadcast. His early interest in television led to working demonstrations in his own home in 1925 and at the General Electric laboratories in 1927, and to the first public demonstration of large-screen (7 ft (2.13 m) diagonal) projection TV in 1930. Another invention of significance was the "amplidyne", a sensitive manufacturing-control system subsequently used during the Second World War for controlling anti-aircraft guns. He also contributed to developments in electric propulsion and radio aerials.
    He retired from General Electric in 1948, but continued television research as a consultant for the Radio Corporation of America (RCA), filing his 321st patent in 1955.
    [br]
    Principal Honours and Distinctions
    Institution of Radio Engineers Medal of Honour 1919. President, IERE 1921. Edison Medal 1944.
    Bibliography
    Publications relating to his work in the early days of radio include: "Magnetic properties of iron at frequencies up to 200,000 cycles", Transactions of the American Institute of Electrical Engineers (1911) 30: 2,443.
    "Transatlantic radio communication", Transactions of the American Institute of Electrical
    Engineers (1919) 38:1,269.
    The amplidyne is described in E.Alexanderson, M.Edwards and K.Boura, 1940, "Dynamo-electric amplifier for power control", Transactions of the American
    Institution of Electrical Engineers 59:937.
    Further Reading
    E.Hawkes, 1927, Pioneers of Wireless, Methuen (provides an account of Alexanderson's work on radio).
    J.H.Udelson, 1982, The Great Television Race: A History of the American Television Industry 1925–1941, University of Alabama Press (provides further details of his contribution to the development of television).
    KF

    Biographical history of technology > Alexanderson, Ernst Frederik Werner

  • 5 Barnaby, Kenneth C.

    SUBJECT AREA: Ports and shipping
    [br]
    b. c.1887 England
    d. 22 March 1968 England
    [br]
    English naval architect and technical author.
    [br]
    Kenneth Barnaby was an eminent naval architect, as were his father and grandfather before him: his grandfather was Sir Nathaniel Barnaby KGB, Director of Naval Construction, and his father was Sydney W.Barnaby, naval architect of John I. Thornycroft \& Co., Shipbuilders, Southampton. At one time all three were members of the Institution of Naval Architects, the first time that this had ever occurred with three members from one family.
    Kenneth Barnaby served his apprenticeship at the Thornycroft shipyard in Southampton and later graduated in engineering from the Central Technical College, South Kensington, London. He worked for some years at Le Havre and at John Brown's shipyard at Clydebank before rejoining his old firm in 1916 as Assistant to the Shipyard Manager. In 1919 he went to Rio de Janeiro as a chief ship draughtsman, and finally he returned to Thornycroft, in 1924 he succeeded his father as Naval Architect, and remained in that post until his retirement in 1955, having been appointed a director in 1950.
    Barnaby had a wide knowledge and understanding of ships and ship design and during the Second World War he was responsible for much of the development work for landing craft, as well as for many other specialist ships built at the Southampton yard. His experience as a deep-sea yachtsman assisted him. He wrote several important books; however, none can compare with the Centenary Volume of the Royal Institution of Naval Architects. In this work, which is used and read widely to this day by naval architects worldwide, he reviewed every paper presented and almost every verbal contribution made to the Transactions during its one hundred years.
    [br]
    Principal Honours and Distinctions
    OBE 1945. Associate of the City and Guilds Institute. Royal Institution of Naval Architects Froude Gold Medal 1962. Honorary Vice-President, Royal Institution of Naval Architects 1960–8.
    Bibliography
    c.1900, Marine Propellers, London. 1949, Basic Naval Architecture, London.
    1960, The Institution of Naval Architects 1860–1960, London.
    FMW

    Biographical history of technology > Barnaby, Kenneth C.

  • 6 Daniell, John Frederick

    SUBJECT AREA: Electricity
    [br]
    b. 12 March 1790 London, England
    d. 13 March 1845 London, England
    [br]
    English chemist, inventor of the Daniell primary electric cell.
    [br]
    With an early bias towards science, Daniell's interest in chemistry was formed when he joined a relative's sugar-refining business. He formed a lifelong friendship with W.T.Brande, Professor of Chemistry at the Royal Institution, and together they revived the journal of the Royal Institution, to which Daniell submitted many of his early papers on chemical subjects. He made many contributions to the science of meteorology and in 1820 invented a hydrometer, which became widely used and gave precision to the measurement of atmospheric moisture. As one of the originators of the Society for Promoting Useful Knowledge, Daniell edited several of its early publications. His work on crystallization established his reputation as a chemist and in 1831 he was appointed the first Professor of Chemistry at King's College, London, where he was largely responsible for establishing its department of applied science. He was also involved in the Chemical Society of London and served as its Vice-President. At King's College he began the research into current electricity with which his name is particularly associated. His investigations into the zinc-copper cell revealed that the rapid decline in power was due to hydrogen gas being liberated at the positive electrode. Daniell's cell, invented in 1836, employed a zinc electrode in dilute sulphuric acid and a copper electrode in a solution of copper sulphate, the electrodes being separated by a porous membrane, typically an unglazed earthenware pot. He was awarded the Copley Medal of the Royal Society for his invention which avoided the "polarization" of the simple cell and provided a further source of current for electrical research and for commercial applications such as electroplating. Although the high internal resistance of the Daniell cell limited the current and the potential was only 1.1 volts, the voltage was so unchanging that it was used as a reference standard until the 1870s, when J. Lattimer Clark devised an even more stable cell.
    [br]
    Principal Honours and Distinctions
    FRS 1814. Royal Society Rumford Medal 1832, Copley Medal 1837, Royal Medal 1842.
    Bibliography
    1836, "On voltaic combinations", Phil. Transactions of the Royal Society 126:107–24, 125–9 (the first report of his experiments).
    Further Reading
    Obituary, 1845, Proceedings of the Royal Society, 5:577–80.
    J.R.Partington, 1964, History of Chemistry, Vol. IV, London (describes the Daniell cell and his electrical researches).
    B.Bowers, 1982, History of Electric Light and Power, London.
    GW

    Biographical history of technology > Daniell, John Frederick

  • 7 Dyer, Joseph Chessborough

    SUBJECT AREA: Textiles
    [br]
    b. 15 November 1780 Stonnington Point, Connecticut, USA
    d. 2 May 1871 Manchester, England
    [br]
    American inventor of a popular type of roving frame for cotton manufacture.
    [br]
    As a youth, Dyer constructed an unsinkable life-boat but did not immediately pursue his mechanical bent, for at 16 he entered the counting-house of a French refugee named Nancrède and succeeded to part of the business. He first went to England in 1801 and finally settled in 1811 when he married Ellen Jones (d. 1842) of Gower Street, London. Dyer was already linked with American inventors and brought to England Perkins's plan for steel engraving in 1809, shearing and nail-making machines in 1811, and also received plans and specifications for Fulton's steamboats. He seems to have acted as a sort of British patent agent for American inventors, and in 1811 took out a patent for carding engines and a card clothing machine. In 1813 there was a patent for spinning long-fibred substances such as hemp, flax or grasses, and in 1825 there was a further patent for card making machinery. Joshua Field, on his tour through Britain in 1821, saw a wire drawing machine and a leather splitting machine at Dyer's works as well as the card-making machines. At first Dyer lived in Camden Town, London, but he had a card clothing business in Birmingham. He moved to Manchester c.1816, where he developed an extensive engineering works under the name "Joseph C.Dyer, patent card manufacturers, 8 Stanley Street, Dale Street". In 1832 he founded another works at Gamaches, Somme, France, but this enterprise was closed in 1848 with heavy losses through the mismanagement of an agent. In 1825 Dyer improved on Danforth's roving frame and started to manufacture it. While it was still a comparatively crude machine when com-pared with later versions, it had the merit of turning out a large quantity of work and was very popular, realizing a large sum of money. He patented the machine that year and must have continued his interest in these machines as further patents followed in 1830 and 1835. In 1821 Dyer had been involved in the foundation of the Manchester Guardian (now The Guardian) and he was linked with the construction of the Liverpool \& Manchester Railway. He was not so successful with the ill-fated Bank of Manchester, of which he was a director and in which he lost £98,000. Dyer played an active role in the community and presented many papers to the Manchester Literary and Philosophical Society. He helped to establish the Royal Institution in London and the Mechanics Institution in Manchester. In 1830 he was a member of the delegation to Paris to take contributions from the town of Manchester for the relief of those wounded in the July revolution and to congratulate Louis-Philippe on his accession. He called for the reform of Parliament and helped to form the Anti-Corn Law League. He hated slavery and wrote several articles on the subject, both prior to and during the American Civil War.
    [br]
    Bibliography
    1811, British patent no. 3,498 (carding engines and card clothing machine). 1813, British patent no. 3,743 (spinning long-fibred substances).
    1825, British patent no. 5,309 (card making machinery).
    1825, British patent no. 5,217 (roving frame). 1830, British patent no. 5,909 (roving frame).
    1835, British patent no. 6,863 (roving frame).
    Further Reading
    Dictionary of National Biography.
    J.W.Hall, 1932–3, "Joshua Field's diary of a tour in 1821 through the Midlands", Transactions of the Newcomen Society 6.
    Evan Leigh, 1875, The Science of Modern Cotton Spinning, Vol. II, Manchester (provides an account of Dyer's roving frame).
    D.J.Jeremy, 1981, Transatlantic Industrial Revolution: The Diffusion of Textile
    Technologies Between Britain and America, 1790–1830s, Oxford (describes Dyer's links with America).
    See also: Arnold, Aza
    RLH

    Biographical history of technology > Dyer, Joseph Chessborough

  • 8 Froude, William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1810 Dartington, Devon, England
    d. 4 May 1879 Simonstown, South Africa
    [br]
    English naval architect; pioneer of experimental ship-model research.
    [br]
    Froude was educated at a preparatory school at Buckfastleigh, and then at Westminster School, London, before entering Oriel College, Oxford, to read mathematics and classics. Between 1836 and 1838 he served as a pupil civil engineer, and then he joined the staff of Isambard Kingdom Brunel on various railway engineering projects in southern England, including the South Devon Atmospheric Railway. He retired from professional work in 1846 and lived with his invalid father at Dartington Parsonage. The next twenty years, while apparently unproductive, were important to Froude as he concentrated his mind on difficult mathematical and scientific problems. Froude married in 1839 and had five children, one of whom, Robert Edmund Froude (1846–1924), was to succeed him in later years in his research work for the Admiralty. Following the death of his father, Froude moved to Paignton, and there commenced his studies on the resistance of solid bodies moving through fluids. Initially these were with hulls towed through a house roof storage tank by wires taken over a pulley and attached to falling weights, but the work became more sophisticated and was conducted on ponds and the open water of a creek near Dartmouth. Froude published work on the rolling of ships in the second volume of the Transactions of the then new Institution of Naval Architects and through this became acquainted with Sir Edward Reed. This led in 1870 to the Admiralty's offer of £2,000 towards the cost of an experimental tank for ship models at Torquay. The tank was completed in 1872 and tests were carried out on the model of HMS Greyhound following full-scale towing trials which had commenced on the actual ship the previous year. From this Froude enunciated his Law of Comparisons, which defines the rules concerning the relationship of the power required to move geometrically similar floating bodies across fluids. It enabled naval architects to predict, from a study of a much less expensive and smaller model, the resistance to motion and the power required to move a full-size ship. The work in the tank led Froude to design a model-cutting machine, dynamometers and machinery for the accurate ruling of graph paper. Froude's work, and later that of his son, was prodigious and covered many fields of ship design, including powering, propulsion, rolling, steering and stability. In only six years he had stamped his academic authority on the new science of hydrodynamics, served on many national committees and corresponded with fellow researchers throughout the world. His health suffered and he sailed for South Africa to recuperate, but he contracted dysentery and died at Simonstown. He will be remembered for all time as one of the greatest "fathers" of naval architecture.
    [br]
    Principal Honours and Distinctions
    FRS. Honorary LLD Glasgow University.
    Bibliography
    1955, The Papers of William Froude, London: Institution of Naval Architects (the Institution also published a memoir by Sir Westcott Abell and an evaluation of his work by Dr R.W.L. Gawn of the Royal Corps of Naval Constructors; this volume reprints all Froude's papers from the Institution of Naval Architects and other sources as diverse as the British Association, the Royal Society of Edinburgh and the Institution of Civil Engineers.
    Further Reading
    A.T.Crichton, 1990, "William and Robert Edmund Froude and the evolution of the ship model experimental tank", Transactions of the Newcomen Society 61:33–49.
    FMW

    Biographical history of technology > Froude, William

  • 9 Garforth, William Edward

    [br]
    b. 1845 Dukinfield, Cheshire, England
    d. 1 October 1921 Pontefract, Yorkshire, England
    [br]
    English colliery manager, pioneer in machine-holing and the safety of mines.
    [br]
    After Menzies conceived his idea of breaking off coal with machines in 1761, many inventors subsequently followed his proposals through into the practice of underground working. More than one century later, Garforth became one of the principal pioneers of machine-holing combined with the longwall method of working in order to reduce production costs and increase the yield of coal. Having been appointed agent to Pope \& Pearson's Collieries, West Yorkshire, in 1879, of which company he later became Managing Director and Chairman, he gathered a great deal of experience with different methods of cutting coal. The first disc machine was exhibited in London as early as 1851, and ten years later a pick machine was invented. In 1893 he introduced an improved type of deep undercutting machine, his "diamond" disc coal-cutter, driven by compressed air, which also became popular on the European continent.
    Besides the considerable economic advantages it created, the use of machinery for mining coal increased the safety of working in hard and thin seams. The improvement of safety in mining technology was always his primary concern, and as a result of his inventions and his many publications he became the leading figure in the British coal mining industry at the beginning of the twentieth century; safety lamps still carry his name. In 1885 he invented a firedamp detector, and following a severe explosion in 1886 he concentrated on coal-dust experiments. From the information he obtained of the effect of stone-dust on a coal-dust explosion he proposed the stone-dust remedy to prevent explosions of coal-dust. As a result of discussions which lasted for decades and after he had been entrusted with the job of conducting the British coal-dust experiments, in 1921 an Act made it compulsory in all mines which were not naturally wet throughout to treat all roads with incombustible dust so as to ensure that the dust always consisted of a mixture containing not more than 50 per cent combustible matter. In 1901 Garforth erected a surface gallery which represented the damaged roadways of a mine and could be filled with noxious fumes to test self-contained breathing apparata. This gallery formed the model from which all the rescue-stations existing nowadays have been developed.
    [br]
    Principal Honours and Distinctions
    Knighted 1914. LLD Universities of Birmingham and Leeds 1912. President, Midland Institute 1892–4. President, The Institution of Mining Engineers 1911–14. President, Mining Association of Great Britain 1907–8. Chairman, Standing Committee on Mining, Advisory Council for Scientific and Industrial Research. Fellow of the Geological Society of London. North of England Institute of Mining and Mechanical Engineers Greenwell Silver Medal 1907. Royal Society of Arts Fothergill Gold Medal 1910. Medal of the Institution of Mining Engineers 1914.
    Bibliography
    1901–2, "The application of coal-cutting machines to deep mining", Transactions of the Federated Institute of Mining Engineers 23: 312–45.
    1905–6, "A new apparatus for rescue-work in mines", Transactions of the Institution of Mining Engineers 31:625–57.
    1902, "British Coal-dust Experiments". Paper communicated to the International Congress on Mining, Metallurgy, Applied Mechanics and Practical Geology, Dusseldorf.
    Further Reading
    Garforth's name is frequently mentioned in connection with coal-holing, but his outstanding achievements in improving safety in mines are only described in W.D.Lloyd, 1921, "Memoir", Transactions of the Institution of Mining Engineers 62:203–5.
    WK

    Biographical history of technology > Garforth, William Edward

  • 10 Field, Joshua

    [br]
    b. 1786 Hackney, London, England
    d. 11 August 1863 Balham Hill, Surrey, England
    [br]
    English mechanical engineer, co-founder of the Institution of Civil Engineers.
    [br]
    Joshua Field was educated at a boarding school in Essex until the age of 16, when he obtained employment at the Royal Dockyards at Portsmouth under the Chief Mechanical Superintendent, Simon Goodrich (1773–1847), and later in the drawing office at the Admiralty in Whitehall. At this time, machinery for the manufacture of ships' blocks was being made for the Admiralty by Henry Maudslay, who was in need of a competent draughtsman, and Goodrich recommended Joshua Field. This was the beginning of Field's long association with Maudslay; he later became a partner in the firm which was for many years known as Maudslay, Sons \& Field. They undertook a variety of mechanical engineering work but were renowned for marine steam engines, with Field being responsible for much of the design work in the early years. Joshua Field was the eldest of the eight young men who in 1818 founded the Institution of Civil Engineers; he was the first Chairman of the Institution and later became a vice-president. He was the only one of the founders to be elected President and was the first mechanical engineer to hold that office. James Nasmyth in his autobiography relates that Joshua Field kept a methodical account of his technical discussions in a series of note books which were later indexed. Some of these diaries have survived, and extracts from the notes he made on a tour of the industrial areas of the Midlands and the North West in 1821 have been published.
    [br]
    Principal Honours and Distinctions
    FRS 1836. President, Institution of Civil Engineers 1848–9. Member, Smeatonian Society of Civil Engineers 1835; President 1848.
    Bibliography
    1925–6, "Joshua Field's diary of a tour in 1821 through the Midlands", introd. and notes J.W.Hall, Transactions of the Newcomen Society 6:1–41.
    1932–3, "Joshua Field's diary of a tour in 1821 through the provinces", introd. and notes E.C. Smith, Transactions of the Newcomen Society 13:15–50.
    RTS

    Biographical history of technology > Field, Joshua

  • 11 McNeill, Sir James McFadyen

    SUBJECT AREA: Ports and shipping
    [br]
    b. 19 August 1892 Clydebank, Scotland
    d. 24 July 1964 near Glasgow, Scotland
    [br]
    Scottish naval architect, designer of the Cunard North Atlantic Liners Queen Mary and Queen Elizabeth.
    [br]
    McNeill was born in Clydebank just outside Glasgow, and was to serve that town for most of his life. After education at Clydebank High School and then at Allan Glen's in Glasgow, in 1908 he entered the shipyard of John Brown \& Co. Ltd as an apprentice. He was encouraged to matriculate at the University of Glasgow, where he studied naval architecture under the (then) unique Glasgow system of "sandwich" training, alternately spending six months in the shipyard, followed by winter at the Faculty of Engineering. On graduating in 1915, he joined the Army and by 1918 had risen to the rank of Major in the Royal Field Artillery.
    After the First World War, McNeill returned to the shipyard and in 1928 was appointed Chief Naval Architect. In 1934 he was made a local director of the company. During the difficult period of the 1930s he was in charge of the technical work which led to the design, launching and successful completion of the great liners Queen Mary and Queen Elizabeth. Some of the most remarkable ships of the mid-twentieth century were to come from this shipyard, including the last British battleship, HMS Vanguard, and the Royal Yacht Britannia, completed in 1954. From 1948 until 1959, Sir James was Managing Director of the Clydebank part of the company and was Deputy Chairman by the time he retired in 1962. His public service was remarkable and included chairmanship of the Shipbuilding Conference and of the British Ship Research Association, and membership of the Committee of Lloyd's Register of Shipping.
    [br]
    Principal Honours and Distinctions
    Knight Commander of the Royal Victorian Order 1954. CBE 1950. FRS 1948. President, Institution of Engineers and Shipbuilders in Scotland 1947–9. Honorary Vice-President, Royal Institution of Naval Architects. Military Cross (First World War).
    Bibliography
    1935, "Launch of the quadruple-screw turbine steamer Queen Mary", Transactions of the Institution of Naval Architects 77:1–27 (in this classic paper McNeill displays complete mastery of a difficult subject; it is recorded that prior to launch the estimate for travel of the ship in the River Clyde was 1,194 ft (363.9 m), and the actual amount recorded was 1,196 ft (364.5m)!).
    FMW

    Biographical history of technology > McNeill, Sir James McFadyen

  • 12 Napier, Robert

    SUBJECT AREA: Ports and shipping
    [br]
    b. 18 June 1791 Dumbarton, Scotland
    d. 23 June 1876 Shandon, Dunbartonshire, Scotland
    [br]
    Scottish shipbuilder one of the greatest shipbuilders of all time, known as the "father" of Clyde shipbuilding.
    [br]
    Educated at Dumbarton Grammar School, Robert Napier had been destined for the Church but persuaded his father to let him serve an apprenticeship as a blacksmith under him. For a while he worked in Edinburgh, but then in 1815 he commenced business in Glasgow, the city that he served for the rest of his life. Initially his workshop was in Camlachie, but it was moved in 1836 to a riverside factory site at Lancefield in the heart of the City and again in 1841 to the Old Shipyard in the Burgh of Govan (then independent of the City of Glasgow). The business expanded through his preparedness to build steam machinery, beginning in 1823 with the engines for the paddle steamer Leven, still to be seen a few hundred metres from Napier's grave in Dumbarton. His name assured owners of quality, and business expanded after two key orders: one in 1836 for the Honourable East India Company; and the second two years later for the Royal Navy, hitherto the preserve of the Royal Dockyards and of the shipbuilders of south-east England. Napier's shipyard and engine shops, then known as Robert Napier and Sons, were to be awarded sixty Admiralty contracts in his lifetime, with a profound influence on ship and engine procurement for the Navy and on foreign governments, which for the first time placed substantial work in the United Kingdom.
    Having had problems with hull subcontractors and also with the installation of machinery in wooden hulls, in 1843 Napier ventured into shipbuilding with the paddle steamer Vanguard, which was built of iron. The following year the Royal Navy took delivery of the iron-hulled Jackall, enabling Napier to secure the contract for the Black Prince, Britain's second ironclad and sister ship to HMS Warrior now preserved at Portsmouth. With so much work in iron Napier instigated studies into metallurgy, and the published work of David Kirkaldy bears witness to his open-handedness in assisting the industry. This service to industry was even more apparent in 1866 when the company laid out the Skelmorlie Measured Mile on the Firth of Clyde for ship testing, a mile still in use by ships of all nations.
    The greatest legacy of Robert Napier was his training of young engineers, shipbuilders and naval architects. Almost every major Scottish shipyard, and some English too, was influenced by him and many of his early foremen left to set up rival establishments along the banks of the River Clyde. His close association with Samuel Cunard led to the setting up of the company now known as the Cunard Line. Napier designed and engined the first four ships, subcontracting the hulls of this historic quartet to other shipbuilders on the river. While he contributed only 2 per cent to the equity of the shipping line, they came back to him for many more vessels, including the magnificent paddle ship Persia, of 1855.
    It is an old tradition on the Clyde that the smokestacks of ships are made by the enginebuilders. The Cunard Line still uses red funnels with black bands, Napier's trademark, in honour of the engineer who set them going.
    [br]
    Principal Honours and Distinctions
    Knight Commander of the Dannebrog (Denmark). President, Institution of Mechanical Engineers 1864. Honorary Member of the Glasgow Society of Engineers 1869.
    Further Reading
    James Napier, 1904, The Life of Robert Napier, Edinburgh, Blackwood.
    J.M.Halliday, 1980–1, "Robert Napier. The father of Clyde shipbuilding", Transactions of the Institution of Engineers and Shipbuilders in Scotland 124.
    Fred M.Walker, 1984, Song of the Clyde. A History of Clyde Shipbuilding, Cambridge: PSL.
    FMW

    Biographical history of technology > Napier, Robert

  • 13 Bateman, John Frederick La Trobe

    [br]
    b. 30 May 1810 Lower Wyke, near Halifax, Yorkshire, England
    d. 10 June 1889 Moor Park, Farnham, Surrey, England
    [br]
    English civil engineer whose principal works were concerned with reservoirs, water-supply schemes and pipelines.
    [br]
    Bateman's maternal grandfather was a Moravian missionary, and from the age of 7 he was educated at the Moravian schools at Fairfield and Ockbrook. At the age of 15 he was apprenticed to a "civil engineer, land surveyor and agent" in Oldham. After this apprenticeship, Bateman commenced his own practice in 1833. One of his early schemes and reports was in regard to the flooding of the river Medlock in the Manchester area. He came to the attention of William Fairbairn, the engine builder and millwright of Canal Street, Ancoats, Manchester. Fairbairn used Bateman as his site surveyor and as such he prepared much of the groundwork for the Bann reservoirs in Northern Ireland. Whilst the reports on the proposals were in the name of Fairbairn, Bateman was, in fact, appointed by the company as their engineer for the execution of the works. One scheme of Bateman's which was carried forward was the Kendal Reservoirs. The Act for these was signed in 1845 and was implemented not for the purpose of water supply but for the conservation of water to supply power to the many mills which stood on the river Kent between Kentmere and Morecambe Bay. The Kentmere Head dam is the only one of the five proposed for the scheme to survive, although not all the others were built as they would have retained only small volumes of water.
    Perhaps the greatest monument to the work of J.F.La Trobe Bateman is Manchester's water supply; he was consulted about this in 1844, and construction began four years later. He first built reservoirs in the Longdendale valley, which has a very complicated geological stratification. Bateman favoured earth embankment dams and gravity feed rather than pumping; the five reservoirs in the valley that impound the river Etherow were complex, cored earth dams. However, when completed they were greatly at risk from landslips and ground movement. Later dams were inserted by Bateman to prevent water loss should the older dams fail. The scheme was not completed until 1877, by which time Manchester's population had exceeded the capacity of the original scheme; Thirlmere in Cumbria was chosen by Manchester Corporation as the site of the first of the Lake District water-supply schemes. Bateman, as Consulting Engineer, designed the great stone-faced dam at the west end of the lake, the "gothic" straining well in the middle of the east shore of the lake, and the 100-mile (160 km) pipeline to Manchester. The Act for the Thirlmere reservoir was signed in 1879 and, whilst Bateman continued as Consulting Engineer, the work was supervised by G.H. Hill and was completed in 1894.
    Bateman was also consulted by the authorities in Glasgow, with the result that he constructed an impressive water-supply scheme derived from Loch Katrine during the years 1856–60. It was claimed that the scheme bore comparison with "the most extensive aqueducts in the world, not excluding those of ancient Rome". Bateman went on to superintend the waterworks of many cities, mainly in the north of England but also in Dublin and Belfast. In 1865 he published a pamphlet, On the Supply of Water to London from the Sources of the River Severn, based on a survey funded from his own pocket; a Royal Commission examined various schemes but favoured Bateman's.
    Bateman was also responsible for harbour and dock works, notably on the rivers Clyde and Shannon, and also for a number of important water-supply works on the Continent of Europe and beyond. Dams and the associated reservoirs were the principal work of J.F.La Trobe Bateman; he completed forty-three such schemes during his professional career. He also prepared many studies of water-supply schemes, and appeared as professional witness before the appropriate Parliamentary Committees.
    [br]
    Principal Honours and Distinctions
    FRS 1860. President, Institution of Civil Engineers 1878, 1879.
    Bibliography
    Among his publications History and Description of the Manchester Waterworks, (1884, London), and The Present State of Our Knowledge on the Supply of Water to Towns, (1855, London: British Association for the Advancement of Science) are notable.
    Further Reading
    Obituary, 1889, Proceedings of the Royal Society 46:xlii-xlviii. G.M.Binnie, 1981, Early Victorian Water Engineers, London.
    P.N.Wilson, 1973, "Kendal reservoirs", Transactions of the Cumberland and Westmorland Antiquarian and Archaeological Society 73.
    KM / LRD

    Biographical history of technology > Bateman, John Frederick La Trobe

  • 14 Fox, Samson

    [br]
    b. 11 July 1838 Bowling, near Bradford, Yorkshire, England
    d. 24 October 1903 Walsall, Staffordshire, England
    [br]
    English engineer who invented the corrugated boiler furnace.
    [br]
    He was the son of a cloth mill worker in Leeds and at the age of 10 he joined his father at the mill. Showing a mechanical inclination, he was apprenticed to a firm of machine-tool makers, Smith, Beacock and Tannett. There he rose to become Foreman and Traveller, and designed and patented tools for cutting bevelled gears. With his brother and one Refitt, he set up the Silver Cross engineering works for making special machine tools. In 1874 he founded the Leeds Forge Company, acting as Managing Director until 1896 and then as Chairman until shortly before his death.
    It was in 1877 that he patented his most important invention, the corrugated furnace for steam-boilers. These furnaces could withstand much higher pressures than the conventional form, and higher working pressures in marine boilers enabled triple-expansion engines to be installed, greatly improving the performance of steamships, and the outcome was the great ocean-going liners of the twentieth century. The first vessel to be equipped with the corrugated furnace was the Pretoria of 1878. At first the furnaces were made by hammering iron plates using swage blocks under a steam hammer. A plant for rolling corrugated plates was set up at Essen in Germany, and Fox installed a similar mill at his works in Leeds in 1882.
    In 1886 Fox installed a Siemens steelmaking plant and he was notable in the movement for replacing wrought iron with steel. He took out several patents for making pressed-steel underframes for railway wagons. The business prospered and Fox opened a works near Chicago in the USA, where in addition to wagon underframes he manufactured the first American pressed-steel carriages. He later added a works at Pittsburgh.
    Fox was the first in England to use water gas for his metallurgical operations and for lighting, with a saving in cost as it was cheaper than coal gas. He was also a pioneer in the acetylene industry, producing in 1894 the first calcium carbide, from which the gas is made.
    Fox took an active part in public life in and around Leeds, being thrice elected Mayor of Harrogate. As a music lover, he was a benefactor of musicians, contributing no less than £45,000 towards the cost of building the Royal College of Music in London, opened in 1894. In 1897 he sued for libel the author Jerome K.Jerome and the publishers of the Today magazine for accusing him of misusing his great generosity to the College to give a misleading impression of his commercial methods and prosperity. He won the case but was not awarded costs.
    [br]
    Principal Honours and Distinctions
    Royal Society of Arts James Watt Silver Medal and Howard Gold Medal. Légion d'honneur 1889.
    Bibliography
    1877, British Patent nos. 1097 and 2530 (the corrugated furnace or "flue", as it was often called).
    Further Reading
    Obituary, 1903, Proceedings of the Institution of Mechanical Engineers: 919–21.
    Obituary, 1903, Proceedings of the Institution of Civil Engineers (the fullest of the many obituary notices).
    G.A.Newby, 1993, "Behind the fire doors: Fox's corrugated furnace 1877 and the high pressure steamship", Transactions of the Newcomen Society 64.
    LRD

    Biographical history of technology > Fox, Samson

  • 15 Donkin, Bryan I

    [br]
    b. 22 March 1768 Sandoe, Northumberland, England
    d. 27 February 1855 London, England
    [br]
    English mechanical engineer and inventor.
    [br]
    It was intended that Bryan Donkin should follow his father's profession of surveyor and land agent, so he spent a year or so in that occupation before he was apprenticed to John Hall, millwright of Dartford, Kent. Donkin remained with the firm after completing his apprenticeship, and when the Fourdrinier brothers in 1802 introduced from France an invention for making paper in continuous lengths they turned to John Hall for help in developing the machine: Donkin was chosen to undertake the work. In 1803 the Fourdriniers established their own works in Bermondsey, with Bryan Donkin in charge. By 1808 Donkin had acquired the works, but he continued to manufacture paper-making machines, paying a royalty to the patentees. He also undertook other engineering work including water-wheels for driving paper and other mills. He was also involved in the development of printing machinery and the preservation of food in airtight containers. Some of these improvements were patented, and he also obtained patents relating to gearing, steel pens, paper-making and railway wheels. Other inventions of Bryan Donkin that were not patented concerned revolution counters and improvements in accurate screw threads for use in graduating mathematical scales. Donkin was elected a member of the Society of Arts in 1803 and was later Chairman of the Society's Committee of Mechanics and a Vice-President of the society. He was also a member of the Royal Astronomical Society. In 1818 a group of eight young men founded the Institution of Civil Engineers; two of them were apprentices of Bryan Donkin and he encouraged their enterprise. After a change in the rules permitted the election of members over the age of 35, he himself became a member in 1821. He served on the Council and became a Vice- President, but he resigned from the Institution in 1848.
    [br]
    Principal Honours and Distinctions
    FRS 1838. Vice-President, Institution of Civil Engineers 1826–32, 1835–45. Member, Smeatonian Society of Civil Engineers 1835; President 1843. Society of Arts Gold Medal 1810, 1819.
    Further Reading
    S.B.Donkin, 1949–51, "Bryan Donkin, FRS, MICE 1768–1855", Transactions of the Newcomen Society 27:85–95.
    RTS

    Biographical history of technology > Donkin, Bryan I

  • 16 Wallace, Sir William

    SUBJECT AREA: Ports and shipping
    [br]
    b. 25 August 1881 Leicester, England
    d. 27 May 1963 Edinburgh, Scotland
    [br]
    English engineer; developer of the Denny-Brown fin stabilizer for ships.
    [br]
    Wallace was brought up just outside Glasgow, and educated at Paisley Grammar School and later at the Anderson College in Glasgow. The next few years were typical of the early years in the life of many young engineers: he served an apprenticeship at the Paisley shipyard of Bow, MacLachlan, before joining the British and Burmese Steam Navigation Company (Paddy Henderson's Line) as a junior engineer. After some years on the Glasgow to Rangoon service, he rose to the rank of Chief Engineer early in life and then came ashore in 1911.
    He joined the old established Edinburgh engineering company of Brown Brothers as a draughtsman, but by 1917 had been promoted Managing Director. He was appointed Chairman in 1946. During his near thirty years at the helm, he experimented widely and was the engineering force behind the development of the Denny-Brown ship stabilizer which was jointly pursued by Brown Brothers and the Dumbarton shipyard of William Denny \& Brothers. The first important installation was on the cross-channel steamer Isle of Sark, built at Dumbarton for the Southern Railway in 1932. Over the years countless thousands of these installations have been fitted on liners, warships and luxury yachts. Brown Brothers produced many other important engineering innovations at this time, including the steam catapult for aircraft carriers.
    In later years Sir William (now knighted) took an active part in the cultural life of Edinburgh and of Scotland. From 1952 to 1954 he served as President of the Institution of Engineers and Shipbuilders in Scotland.
    [br]
    Principal Honours and Distinctions
    Knighted 1951. CBE 1944. Fellow of the Royal Society of Edinburgh. President, Institution of Engineers and Shipbuilders in Scotland 1952–4; Gold Medal.
    Bibliography
    1954–5 "Experiences in the stabilization of ships", Transactions of the Institution of Engineers and Shipbuilders in Scotland 98:197–266.
    FMW

    Biographical history of technology > Wallace, Sir William

  • 17 Biles, Sir John Harvard

    SUBJECT AREA: Ports and shipping
    [br]
    b. 1854 Portsmouth, England
    d. 27 October 1933 Scotland (?)
    [br]
    English naval architect, academic and successful consultant in the years when British shipbuilding was at its peak.
    [br]
    At the conclusion of his apprenticeship at the Royal Dockyard, Portsmouth, Biles entered the Royal School of Naval Architecture, South Kensington, London; as it was absorbed by the Royal Naval College, he graduated from Greenwich to the Naval Construction Branch, first at Pembroke and later at the Admiralty. From the outset of his professional career it was apparent that he had the intellectual qualities that would enable him to oversee the greatest changes in ship design of all time. He was one of the earliest proponents of the revolutionary work of the hydrodynamicist William Froude.
    In 1880 Biles turned to the merchant sector, taking the post of Naval Architect to J. \& G. Thomson (later John Brown \& Co.). Using Froude's Law of Comparisons he was able to design the record-breaking City of Paris of 1887, the ship that started the fabled succession of fast and safe Clyde bank-built North Atlantic liners. For a short spell, before returning to Scotland, Biles worked in Southampton. In 1891 Biles accepted the Chair of Naval Architecture at the University of Glasgow. Working from the campus at Gilmorehill, he was to make the University (the oldest school of engineering in the English-speaking world) renowned in naval architecture. His workload was legendary, but despite this he was admired as an excellent lecturer with cheerful ways which inspired devotion to the Department and the University. During the thirty years of his incumbency of the Chair, he served on most of the important government and international shipping committees, including those that recommended the design of HMS Dreadnought, the ordering of the Cunarders Lusitania and Mauretania and the lifesaving improvements following the Titanic disaster. An enquiry into the strength of destroyer hulls followed the loss of HMS Cobra and Viper, and he published the report on advanced experimental work carried out on HMS Wolf by his undergraduates.
    In 1906 he became Consultant Naval Architect to the India Office, having already set up his own consultancy organization, which exists today as Sir J.H.Biles and Partners. His writing was prolific, with over twenty-five papers to professional institutions, sundry articles and a two-volume textbook.
    [br]
    Principal Honours and Distinctions
    Knighted 1913. Knight Commander of the Indian Empire 1922. Master of the Worshipful Company of Shipwrights 1904.
    Bibliography
    1905, "The strength of ships with special reference to experiments and calculations made upon HMS Wolf", Transactions of the Institution of Naval Architects.
    1911, The Design and Construction of Ships, London: Griffin.
    Further Reading
    C.A.Oakley, 1973, History of a Facuity, Glasgow University.
    FMW

    Biographical history of technology > Biles, Sir John Harvard

  • 18 Stephenson, Robert

    [br]
    b. 16 October 1803 Willington Quay, Northumberland, England
    d. 12 October 1859 London, England
    [br]
    English engineer who built the locomotive Rocket and constructed many important early trunk railways.
    [br]
    Robert Stephenson's father was George Stephenson, who ensured that his son was educated to obtain the theoretical knowledge he lacked himself. In 1821 Robert Stephenson assisted his father in his survey of the Stockton \& Darlington Railway and in 1822 he assisted William James in the first survey of the Liverpool \& Manchester Railway. He then went to Edinburgh University for six months, and the following year Robert Stephenson \& Co. was named after him as Managing Partner when it was formed by himself, his father and others. The firm was to build stationary engines, locomotives and railway rolling stock; in its early years it also built paper-making machinery and did general engineering.
    In 1824, however, Robert Stephenson accepted, perhaps in reaction to an excess of parental control, an invitation by a group of London speculators called the Colombian Mining Association to lead an expedition to South America to use steam power to reopen gold and silver mines. He subsequently visited North America before returning to England in 1827 to rejoin his father as an equal and again take charge of Robert Stephenson \& Co. There he set about altering the design of steam locomotives to improve both their riding and their steam-generating capacity. Lancashire Witch, completed in July 1828, was the first locomotive mounted on steel springs and had twin furnace tubes through the boiler to produce a large heating surface. Later that year Robert Stephenson \& Co. supplied the Stockton \& Darlington Railway with a wagon, mounted for the first time on springs and with outside bearings. It was to be the prototype of the standard British railway wagon. Between April and September 1829 Robert Stephenson built, not without difficulty, a multi-tubular boiler, as suggested by Henry Booth to George Stephenson, and incorporated it into the locomotive Rocket which the three men entered in the Liverpool \& Manchester Railway's Rainhill Trials in October. Rocket, was outstandingly successful and demonstrated that the long-distance steam railway was practicable.
    Robert Stephenson continued to develop the locomotive. Northumbrian, built in 1830, had for the first time, a smokebox at the front of the boiler and also the firebox built integrally with the rear of the boiler. Then in Planet, built later the same year, he adopted a layout for the working parts used earlier by steam road-coach pioneer Goldsworthy Gurney, placing the cylinders, for the first time, in a nearly horizontal position beneath the smokebox, with the connecting rods driving a cranked axle. He had evolved the definitive form for the steam locomotive.
    Also in 1830, Robert Stephenson surveyed the London \& Birmingham Railway, which was authorized by Act of Parliament in 1833. Stephenson became Engineer for construction of the 112-mile (180 km) railway, probably at that date the greatest task ever undertaken in of civil engineering. In this he was greatly assisted by G.P.Bidder, who as a child prodigy had been known as "The Calculating Boy", and the two men were to be associated in many subsequent projects. On the London \& Birmingham Railway there were long and deep cuttings to be excavated and difficult tunnels to be bored, notoriously at Kilsby. The line was opened in 1838.
    In 1837 Stephenson provided facilities for W.F. Cooke to make an experimental electrictelegraph installation at London Euston. The directors of the London \& Birmingham Railway company, however, did not accept his recommendation that they should adopt the electric telegraph and it was left to I.K. Brunel to instigate the first permanent installation, alongside the Great Western Railway. After Cooke formed the Electric Telegraph Company, Stephenson became a shareholder and was Chairman during 1857–8.
    Earlier, in the 1830s, Robert Stephenson assisted his father in advising on railways in Belgium and came to be increasingly in demand as a consultant. In 1840, however, he was almost ruined financially as a result of the collapse of the Stanhope \& Tyne Rail Road; in return for acting as Engineer-in-Chief he had unwisely accepted shares, with unlimited liability, instead of a fee.
    During the late 1840s Stephenson's greatest achievements were the design and construction of four great bridges, as part of railways for which he was responsible. The High Level Bridge over the Tyne at Newcastle and the Royal Border Bridge over the Tweed at Berwick were the links needed to complete the East Coast Route from London to Scotland. For the Chester \& Holyhead Railway to cross the Menai Strait, a bridge with spans as long-as 460 ft (140 m) was needed: Stephenson designed them as wrought-iron tubes of rectangular cross-section, through which the trains would pass, and eventually joined the spans together into a tube 1,511 ft (460 m) long from shore to shore. Extensive testing was done beforehand by shipbuilder William Fairbairn to prove the method, and as a preliminary it was first used for a 400 ft (122 m) span bridge at Conway.
    In 1847 Robert Stephenson was elected MP for Whitby, a position he held until his death, and he was one of the exhibition commissioners for the Great Exhibition of 1851. In the early 1850s he was Engineer-in-Chief for the Norwegian Trunk Railway, the first railway in Norway, and he also built the Alexandria \& Cairo Railway, the first railway in Africa. This included two tubular bridges with the railway running on top of the tubes. The railway was extended to Suez in 1858 and for several years provided a link in the route from Britain to India, until superseded by the Suez Canal, which Stephenson had opposed in Parliament. The greatest of all his tubular bridges was the Victoria Bridge across the River St Lawrence at Montreal: after inspecting the site in 1852 he was appointed Engineer-in-Chief for the bridge, which was 1 1/2 miles (2 km) long and was designed in his London offices. Sadly he, like Brunel, died young from self-imposed overwork, before the bridge was completed in 1859.
    [br]
    Principal Honours and Distinctions
    FRS 1849. President, Institution of Mechanical Engineers 1849. President, Institution of Civil Engineers 1856. Order of St Olaf (Norway). Order of Leopold (Belgium). Like his father, Robert Stephenson refused a knighthood.
    Further Reading
    L.T.C.Rolt, 1960, George and Robert Stephenson, London: Longman (a good modern biography).
    J.C.Jeaffreson, 1864, The Life of Robert Stephenson, London: Longman (the standard nine-teenth-century biography).
    M.R.Bailey, 1979, "Robert Stephenson \& Co. 1823–1829", Transactions of the Newcomen Society 50 (provides details of the early products of that company).
    J.Kieve, 1973, The Electric Telegraph, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Stephenson, Robert

  • 19 Blackett, William Cuthbert

    [br]
    b. 18 November 1859 Durham, England
    d. 13 June 1935 Durham, England
    [br]
    English mine manager, expert in preventing mine explosions and inventor of a coal-face conveyor.
    [br]
    After leaving Durham college of Physical Science and having been apprenticed in different mines, he received the certificate for colliery managers and subsequently, in 1887, was appointed Manager of all the mines of Charlaw and Sacriston collieries in Durham. He remained in this position for the rest of his working life.
    Frequent explosions in mines led him to investigate the causes. He was among the first to recognize the role contributed by coal-dust on mine roads, pioneered the use of inert rock-or stone-dust to render the coal-dust harmless and was the originator of many technical terms on the subject. He contributed many papers on explosion and was appointed a member of many advisory committees on prevention measures. A liquid-air rescue apparatus, designed by him and patented in 1910, was installed in various parts of the country.
    Blackett also developed various new devices in mining machinery. He patented a wire-rope socket which made use of a metal wedge; invented a rotary tippler driven by frictional contact instead of gearing and which stopped automatically; and he designed a revolving cylindrical coal-washer, which also gained interest among German mining engineers. His most important invention, the first successful coal-face conveyor, was patented in 1902. It was driven by compressed air and consisted of a trough running along the length of the race through which ran an endless scraper chain. Thus fillers cast the coal into the trough, and the scraper chain drew it to the main gate to be loaded into trams.
    [br]
    Principal Honours and Distinctions
    Knight of Grace of the Order of St John of Jerusalem. OBE. Honorary MSc University of Durham; Honorary LLD University of Birmingham. Honorary Member, Institution of Mining and Metallurgy. Honorary Member, American Institute of Mining and Metallurgical Engineers. Royal Humane Society Medal.
    Further Reading
    Transactions of the Institution of Mining Engineers (1934–5) 89:339–41.
    Mining Association of Great Britain (ed.), 1924, Historical Review of Coal Mining London (describes early mechanical devices for the extraction of coal).
    WK

    Biographical history of technology > Blackett, William Cuthbert

  • 20 Kirkaldy, David

    [br]
    b. 4 April 1820 Mayfield, Dundee, Scotland
    d. 25 January 1897 London, England
    [br]
    Scottish engineer and pioneer in materials testing.
    [br]
    The son of a merchant of Dundee, Kirkaldy was educated there, then at Merchiston Castle School, Edinburgh, and at Edinburgh University. For a while he worked in his father's office, but with a preference for engineering, in 1843 he commenced an apprenticeship at the Glasgow works of Robert Napier. After four years in the shops he was transferred to the drawing office and in a very few years rose to become Chief. Here Kirkaldy demonstrated a remarkable talent both for the meticulous recording of observations and data and for technical drawing. His work also had an aesthetic appeal and four of his drawings of Napier steamships were shown at the Paris Exhibition of 1855, earning both Napier and Kirkaldy a medal. His "as fitted" set of drawings of the Cunard Liner Persia, which had been built in 1855, is now in the possession of the National Maritime Museum at Greenwich, London; it is regarded as one of the finest examples of its kind in the world, and has even been exhibited at the Royal Academy in London.
    With the impending order for the Royal Naval Ironclad Black Prince (sister ship to HMS Warrior, now preserved at Portsmouth) and for some high-pressure marine boilers and engines, there was need for a close scientific analysis of the physical properties of iron and steel. Kirkaldy, now designated Chief Draughtsman and Calculator, was placed in charge of this work, which included comparisons of puddled steel and wrought iron, using a simple lever-arm testing machine. The tests lasted some three years and resulted in Kirkaldy's most important publication, Experiments on Wrought Iron and Steel (1862, London), which gained him wide recognition for his careful and thorough work. Napier's did not encourage him to continue testing; but realizing the growing importance of materials testing, Kirkaldy resigned from the shipyard in 1861. For the next two and a half years Kirkaldy worked on the design of a massive testing machine that was manufactured in Leeds and installed in premises in London, at The Grove, Southwark.
    The works was open for trade in January 1866 and engineers soon began to bring him specimens for testing on the great machine: Joseph Cubitt (son of William Cubitt) brought him samples of the materials for the new Blackfriars Bridge, which was then under construction. Soon The Grove became too cramped and Kirkaldy moved to 99 Southwark Street, reopening in January 1874. In the years that followed, Kirkaldy gained a worldwide reputation for rigorous and meticulous testing and recording of results, coupled with the highest integrity. He numbered the most distinguished engineers of the time among his clients.
    After Kirkaldy's death, his son William George, whom he had taken into partnership, carried on the business. When the son died in 1914, his widow took charge until her death in 1938, when the grandson David became proprietor. He sold out to Treharne \& Davies, chemical consultants, in 1965, but the works finally closed in 1974. The future of the premises and the testing machine at first seemed threatened, but that has now been secured and the machine is once more in working order. Over almost one hundred years of trading in South London, the company was involved in many famous enquiries, including the analysis of the iron from the ill-fated Tay Bridge (see Bouch, Sir Thomas).
    [br]
    Principal Honours and Distinctions
    Institution of Engineers and Shipbuilders in Scotland Gold Medal 1864.
    Bibliography
    1862, Results of an Experimental Inquiry into the Tensile Strength and Other Properties of Wrought Iron and Steel (originally presented as a paper to the 1860–1 session of the Scottish Shipbuilders' Association).
    Further Reading
    D.P.Smith, 1981, "David Kirkaldy (1820–97) and engineering materials testing", Transactions of the Newcomen Society 52:49–65 (a clear and well-documented account).
    LRD / FMW

    Biographical history of technology > Kirkaldy, David

См. также в других словарях:

  • Royal Institution of Chartered Surveyors — Motto Est modus in rebus ( There is measure in all things ) Type Professional body Headquarters 12 Great George Street, Parliament Square, London SW1P 3AD Coordinates …   Wikipedia

  • Fellow of the Royal Society — Royal Society Le bâtiment de la Royal Society à Londres. La Royal Society, dont le nom officiel est Royal Society of London for the Improvement of Natural Knowledge et que l on peut traduire par Société royale de Londres, est une institution… …   Wikipédia en Français

  • Royal Society — The Royal Society of London for the Improvement of Natural Knowledge, known simply as The Royal Society, is a learned society for science that was founded in 1660 [cite web |url=http://royalsociety.org/page.asp?id=1058 |title=History of the Royal …   Wikipedia

  • Royal Society of Edinburgh — Abbreviation RSE Formation 1783 Type Educational charity …   Wikipedia

  • ROYAL SOCIETY OF EDINBURGH, THE —    was incorporated by royal charter in 1783 through the efforts of Robertson the historian, and superseded the old Philosophical Society; held fortnightly meetings (December till June) in the Royal Institution; receives a grant of £300;… …   The Nuttall Encyclopaedia

  • The United States of America —     The United States of America     † Catholic Encyclopedia ► The United States of America     BOUNDARIES AND AREA     On the east the boundary is formed by the St. Croix River and an arbitrary line to the St. John, and on the north by the… …   Catholic encyclopedia

  • Royal Geographical Society — Abbreviation RGS IBG Formation 1830 Type learned society …   Wikipedia

  • Royal Society — Le bâtiment de la Royal Society à Londres. Nom original Royal Society of London for the Improvement of Natural Knowledge Fondation 1660 Objectifs Promo …   Wikipédia en Français

  • Royal Society of London — Royal Society Le bâtiment de la Royal Society à Londres. La Royal Society, dont le nom officiel est Royal Society of London for the Improvement of Natural Knowledge et que l on peut traduire par Société royale de Londres, est une institution… …   Wikipédia en Français

  • Royal Society — The Royal Society of London for the Advancement of Science, a society through which the British government has supported scientific investigation since 1662: awards four annual medals. * * * ▪ British science society in full  Royal Society of… …   Universalium

  • The Brehon Laws —     The Brehon Laws     † Catholic Encyclopedia ► The Brehon Laws     Brehon law is the usual term for Irish native law, as administered in Ireland down to almost the middle of the seventeenth century, and in fact amongst the native Irish until… …   Catholic encyclopedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»